
Page 1 of 4

CS1020E: DATA STRUCTURES AND ALGORITHMS I

Lab 2 – Rectangles

(Week 4, starting 29 August 2016)

Readme

You are given the Cartesian coordinates of 2 ≤ N ≤ 500,000 rectangles. Create a Rectangle class with

appropriate data and functionality, and use it to help you achieve 2 to 4 sub-tasks:

1. Find the region that is the intersection of all the rectangles 40%

2. Given a point p, find the rectangle whose center is nearest to p 40%

Warning: No OOP -40%

3. Efficiently combine all adjacent rectangles which can form another rectangle 15%

4. Efficiently find the two rectangles whose centers are the closest to each other 5%

Although you have to submit the four subtasks separately, the reading of input can be copied across all of

them. You can also reuse and build on the Rectangle class from one task to the next.

In the input, each rectangle is given to you as a pair of (x, y) points representing any of its opposing corners.

When you are asked to output a rectangle, you are to print the bottom-left and top-right points.

e.g. input data [(1, 13), (10, 2)], corresponding output [(1, 2), (10, 13)]

For simplicity, each ordinate given to you will be a positive integer and will fit within 30 bits, i.e. you can

safely add two ordinates together without requiring a larger data type.

Problem 1 - Intersection

Find the region that is the intersection of ALL the rectangles. The first line in the input contains only N. The

next N lines each contain 4 integers describing a rectangle's opposing corners: x1 y1 x2 y2.

If the intersecting region is non-empty, it is itself a rectangle. Output its coordinates [(x1, y1), (x2, y2)].

Otherwise, output "No intersection"

Sample Input

3

1 11 17 4

5 3 20 15

3 13 12 2

Sample Output

[(5, 4), (12, 11)]

Submission

Your source file should be named intersection.cpp

Tip: Draw out the sample input on paper! It helps you visualize what your task is, and may help you to

"see" an algorithm that solves the problem easily

40%

Page 2 of 4

Problem 2 - Closest Rectangle

Given each point pi:

Find and output the rectangle whose center is nearest to pi

If multiple rectangles are nearest, output the top-most one among them

If multiple rectangles are still nearest, output the left-most one among them

No two rectangles have the same center.

One test case may contain a few queries:

The first line in the input contains only N

The next N lines each contain 4 integers describing a rectangle's opposing corners: x1 y1 x2 y2

Each subsequent line, until the end of the file, contains two integers xi yi, which form pi

Sample Input

5

2 7 8 3

5 15 3 17

1 1 9 29

24 27 6 3

17 2 13 8

4 16

10 10

15 5

11 9

6 3

Sample Output

[(3, 15), (5, 17)]

[(1, 1), (9, 29)]

[(13, 2), (17, 8)]

[(13, 2), (17, 8)]

[(2, 3), (8, 7)]

Submission

Your source file should be named closest.cpp

Tip: Identify what data is really needed to solve your problem. If that data can be viewed as a part of a

rectangle, and can be easily derived from its member variables, then you can create a member function to

compute that data easily.

40%

Page 3 of 4

Problem 3 - Combine Rectangles

You observe that many adjacent rectangles on the right can

be combined into one big rectangle. However, you are not

sure how this can be implemented. Hmm... ... =(

This algorithm is too inefficient as proportional to N3

rectangles are examined (O(N3) or cubic time):

 keep trying to combine, N-1 passes

 for each rectangle

 for each other rectangle

 combine rectangles if possible

 stop if nothing combined this pass

Just for this sub-task, 2 ≤ N ≤ 5,000, and any of the N rectangles will also NOT overlap each other. You may

also be thinking, "how do I handle the cases below?" Don't worry, such ambiguous cases will NOT be

given....

As above, you are given N+1 lines of input describing the N rectangles. Output the number of rectangles

left after combining them, such that no adjacent rectangle that can be combined is left behind.

Sample Input

8

5 1 7 6

3 6 2 4

1 6 2 4

5 1 3 3

1 3 3 4

3 6 5 3

1 1 3 2

3 3 1 2

Sample Output

1

Submission

Your source file should be named combine.cpp

+15%

Page 4 of 4

Problem 4 - Nearest Rectangles

Find the pair of rectangles whose centers are nearest to each other, among all other pairs.

This algorithm is too inefficient as proportional to N2 rectangles are examined (O(N2) or quadratic time):

 initialize minDist

 for each rectangle left

 for each other rectangle right

 if dist between left's, right's centers are closer than minDist

 update minDist

Problem 3 was tiring enough, now this... =X

As above, you are given N+1 lines of input describing the N rectangles. Output the distance between the

centers of those two rectangles, always to 2 decimal places, even if exact.

Just for this subtask, 2 ≤ N ≤ 20,000.

Sample Input

5

2 7 8 3

5 15 15 5

1 1 9 29

24 27 6 3

17 2 13 8

Sample Output

7.07

Submission

Your source file should be named nearest_rects.cpp

- End of Lab 2 -

+5%

